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ABSTRACT

A new approximation technique to a certain class of nonlinear filtering
(signal processing) problems is considered here. 'The method is based on an
approximation of a nonlinear, partially observable system by a bilinear
model with fully observableAstates.- The filter development proceeds from
the assumption that the unobservable states are conditionally Gaussian with
respect to the observation initially. The method is shown to be promising
for real-time communication and sonar applications as demonstrated by com-
puter simulations. Moreover, some of the traditional téchniques evolve as

special cases of this methodology.

l’2’3The authors are with the Department of Electrical and Computer Engineer-

ing, Oregon State University, Corvallis, OR 97331.
i( 3
R.R. Mohler is a Fellow of the IEEE.

This work is supported by the Office of Naval Research under Contract
NO0014-81-K-0814.



I. INTRODUCTION

In general, the optimal nonlinear mean square filtering (signal process-
ing) problem does not have a finite-dimensional recursive synthesis. This
is due to the fact that the conditional probability density of the unob-
servable states with respect to the observations cannot, in general, be
characterized by a finite parameter set, such as for a Gaussian distribution
utilizing linear methods. Thus, approximation and ad-hoc techniques must be
employed to construct practical filters for nonlinear systems.

In this paper a new nonlinear finite-dimensional filtering methodology
is presented. The method which could be called a two-step nonlinear filter
(TNF) is of a more general nature than the linear model approach (or extended
linear filtering), and does not require the model "smoothness" which is
crucial to most of the existing techniques. Hence, the proposed technique
may expand the range of practical problems that can be handled by nonlinear
filtering.

Heréin, the general nonlinear model is approximated by a control model
of "bilinear form." The "best" model approximation of this form is then
computed by the appropriate stochastic control [1]. The final step, with
the feedback control as a function of the estimated state ;t’ requires com-
putation of the optimal (m.s.e.) state estimator by the conditionally
Gaussian filter which is formally developed by Liptser and Shiryayev [2]
and extended by Kolodziej [3].

Extension of the results to large-scale nonlinear systems is accom-
plished by incorporating a novel decomposition scheme in the filter design

to alleviate the complexity of the control problem and the '"curse of



dimensionality" of the filtering algorithm. Formal representation of the
filter is given in Figure 1.

Application of the developed filter to a scalar nonlinear system which
lacks model smoothness is discussed and application of the derivéd multi-
dimensional filtering algorithm to a low-order nonlinear tracking problem
according to a global criterion is presented. 1In addition, a comparisen
with traditional methods, such as the popular Extended Kalman Filter (EKF)
is given by digital computer simulation to demonstrate the effectiveness

of the obtained results.
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II. MODEL APPROXIMATION AND FILTER STRUCTURE

Consider, as given, some complete probability space (,F,P). Let (wi),
i=1,2 defined on (Q,F,P) be mutually independent Wiener processes. Also,
given the following nonlinear models, which may represent a broad class of
nonlinear systems, with dynamics described by a family of stochastic differ-

ential equations (in the Ito sense) of the form

dx F(x,y,t)dt + G(x,y,t)dwi s

(1)

dyt H(x,y,t)dt + R(x,y,t)dwi s
where (F(*), H(*)) are nonlinear, real vector functions, and (G(-), R(*))
are matrices of compatible orders.

The optimal m.s.e. filter for the system in (1) is known to be the con-
ditional expectation of the system given the observation (ys; 0<s <t),

t ¢ {0,T] provided that a finite second moment solution exists with
x, = E(xt/ys; s € [0,t]) . (2)

In principle, a sequential version of (2) can be found, but in general,

the recursive formulae consist of an infinite-dimensional system of moment
equations which are needed to characterize completely the conditional proba-
bility density, p(xt,t/ys; s ¢ [0,t]). Thus, one is forced to seek an

approximation technique for practical implementation.



Herein, a new technique, which generates a finite-dimensional, nonlinear
filter énd a "close" (m.s.e.) model approximation to the original model in
(1) is presented. This technique may be called "an approximation in the
model parameter space," and its parameters are functions of the feedback
contrel law, u,, which is itself a function of the observation process Yo

In general, the model in (1) can be approximated as follows:

dx

14

- = 1
F(xt,ut,t)dt + G(ut,t)dwt ,

3)
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dyt H(xt,ut,t)dt + R(ut,t)dwt i

~ o a e

where (F,G,H,R) are of appropriate dimensions and are functionals of ut.
The control u, is a measurable stochastic process with respect to Yt =

o—algebra(ys; s € [0,t], and it is chosen to minimize the following mean-

square (global) criteriom:

T S 2
Q) = ECS [k -k]“ar) , (4)
0

where kt denotes any of the functions F, H, R, or G in (1), and it is its
corresponding approximation in (3). Here||-]| is the Euclidean norm, and
the arguments (xt,yt,t), <Xt’ut’t) are omitted for brevity. It is note-
worthy that the choice of (4) ensures a form of global filtering criterion
even though the search for the approximation it falls into a class of sto-

chastic control problems and depends strongly on the type of nonlinearities

in the system.



An important special class of (3) is the following bilinear form ;

[<%
~
1

- 1
[A(ut,t)xt + B(ut,t)]dt + G(ut,t)dwt ,

(5

A,
<
[

iy 2
[C(ut,t)xt + D(ut,t)]dt + R(ut,t)dwt s

where (A,B,C,D,é,i) are linear functionals of ut and are of appropriate di-
mensions. The term bilinear refers to the fact that the system is linear
in control and state, but not jointly linear [4]. ft has been shown that
such bilinear systems are quite common in physical applications and repre-
sent a significant class in their own right.

Now assume ;t’ which minimizes (&), is available; then (5) is a "close,"
in the sense of (u), approximation model to system (1) since the minimiza-
tion criterion is a measure of the quality of the approximation. If it ig
assumed that the initial unobservable state, Xgs is conditionally Gaussian
with respect to the initial observable state, Yor then under certain broad
assumptions (see [2] or [3]) the optimal m.s.e. filter for the system in

(5) takes the form of

A

dxt = (Axt + B)dt + Advt s
drt = (AI‘t + rtA* + G G* - AA*)dt
=-1
A = (PtC*)R 5 (6)
dv_ = §—l[dy - (Cx + D)dt]
t t t ’
R? - R zs |

where x = E(xt/Yt)’ Ft = Cov (xt/Yt)



Here E(/) denotes the conditional expectation operator, Ft conditional covari-
ance, * transposition operator, and Yt is the o-algebra generated by the
observations on [0,t], t € [0,T]. Again the arguments (;t’t) are omitted
for brevity.

Now, if the optimal control ;t or its approximation can be obtained,
then system (6) provides a finite-dimensional approximation for the nonlinear
filtering of (1). Also, the partially observable system in (5) is trans-
formed into a completely observable system (6). -Consequently, to solve for

the control law analytically, the minimization criterion (4) must be trans-

formed accordingly. Thus, if (4) is rewritten in the form

T
Q(u) = E Of L(x ,u ,t)dt ,
then for u = ;
TH o S
Qu) = E(Of L(xt,rt,ut,t)dt) , (7

o«

,t) = ! L(g,ut,t)f(g,x,rt)dg, and f(g,x,rt) denotes a dif-

where L(x u
( t’rt’ t

ferential Gaussian measure with mean ;t’ variance Ft.

If ; is replaced in (6) by u, then an equivalent, completely observable,
stochastic control problem [(6), (7)] emerges where the new state of the sys-
tem (;t,rt) are generated by (6). Hence, the filtering problgm is_actuaily re-
placed by a stochastic control problem which results in a stochastic non-

linear Bellman equation [l]. Apparently, this could lead to a more difficult

problem to solve than the original filtering problem for (1). However,



satisfactory approximation to the control law can be found without solving
the Bellman equation exactly.
It might be noted here that the solution to this problem according to

A

u, resembles the approximation criterion in the EKF approach, and makes the
approximation of closed analytical form.
The following scalar example illustrates the suggested filtering proce-

dures.

Example 1

Consider a process with an absolute value detector so that

1
dx flxt|dt + 9 dwt 5

(8)

2
dyt hxt db + ¢ dwt c

2

1 2 .
where wt, wt are independent Wiener processes, f,h,cl,c are constant, and

2
t € [0,T]. The bilinear feedback approximation yields

- 1
dxt u xtdt + 91 dwt .

(9

1

dyt xtdt + G dwi ,

2

FS

where u is selected to minimize

3 ~ 2
E( [ (f]xt[ - uxt) dt) . (10)
0



The optimal (m.s.e.) filter for (8) with X conditionally Gaussian w.r.t.,

Yo has the form of

“~ -1 .
dxt = ux; dt + rt h(oz) dvt 5
ayn
« By 2 2 2 -2
dPt = [Zutl"t + 9y - h Pt(cz) ldt ,

where dvt = (c;l)(dyt - hxt)dt is the innovation process. Now from (7) the

equivalent minimization criterion to (10) is

; ] A
Qt,%,t) = EC / (u|g| - wg)’ae(e) , (12)
0

where do(g) =

~\2
exp (-0.5 jz%%l—ﬁdg, for nonsingular Ft. From [5] it is
21T ~ t

found that the opt&mal u is given by

~

- 2l 2 ~2 x v 3y, N2 -1
u = f[——— exp(- EFO— 2(x" + Terf(- —) - (T SF-+ 0.5 =]+ 1) ,
/ZWTt V2T 9x
(13)

where v is the solution of the stochastic Bellman equation which means that

we have to solve a nonlinear partial differential equation first in order

to evaluate the optimal control in (13). However, it is seen that an approxi-
mating optimal control

-~

u

- [Z;Texp(-;/ZP)]

: + 2 erf(-x/Y2T) (14)
v2mT (x +T)

already gives better performance than the EKF [5].
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ITI. DECOMPOSITION SCHEME FOR MULTIDIMENSIONAL SYSTEM

Extension of the previous results to large~scale nonlinear systems is
accomplished by incorporating a novel decomposition scheme in tﬁe filter
design. This should alleviate the "curse of dimensionality' which is en-
countered if the optimal approximation is applied directly. Recall that this
solution involves a function of (n + Eigill) variables, where n is the dimen-
sion of the system.

The strategy adopted in this decomposition scheme is based on the decom-
position of the original system into two interconnected subsystem approxima-
tions. The first subsystem is only linear (i.e., linear process and observa-
ﬁion equations). The second subsystem includes all the nonlinearities in
the system which are then approximated by the proposed TNF. The main ad-
vantage of using this scheme is that the controi parameters, which are needed
in the TNF algorithm, will be easily obtained as functions of the parameters
of the first-stage linear filter, SO' Figure 2 shows a block diagram repre-
sentation of the suggested scheme.

An interesting broad class of nonlinear systems of the following form

is considered here.

dx

F(x,y,t)dt + G(x,y,t)dwt R

(15)

dy H(x,y,t)dt + cr(t)dvt ,

where LA v, are mutually independent vector Wiener processes of appropriate
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dimensions, o(t) is a matrix of compatible order. The functions F(-), H(+),

and G(*) can be partitioned as follows:

F(X,Y,t) = fl(t)x + fz(stst) s

G(x,y,t) = Sl(t) + g?_(x,y,t) , (16)
hl(t)x 9 0

H(x,y,t) = , o(t) =
Lhz(x,y,t)- 0 9,

Here fl, hl’ and g, are matrices of appropriate dimensions. f2, h2, and 89
are nonlinear functions of their arguments, and of compatible orders.
The general outline of the decomposition scheme and the various filtering

algorithmic steps are:

(1) The nonlinear system as in (15) can be decomposed into two subsys-

tems.

Subsystem I
dxft = fl(t)x:ft + gl(t)dwt ,

(17)
dy. = h (t)x. + g (t)dvl
ft 1 ft 1 t’

where fl, hl’ and gl are as defined before, and w_, Vi are indepen-

dent Wiener processes of appropriate dimensions.” The subscript f

denotes the first subsystem.



(2)

(3)

13

Subsystem II

dxst = fz(x,y,t)dt + gz(x,y,t)dwt s

(18)

dy = hz(x,y,t)dt + 0

dv2 R
st t

2

where f2’ 8gs and h2 are as defined before and LA vi are again
independent Wiener processes of compatible orders. The subscript

s denotes the second subsystem.

Apply a classical filtering technique, i.e., the Kalman-Bucy algo-

rithm [6] to the linear system in (17) as follows:

~ ~ _1

= * *

dxft fledt + ph (clol) dnt .
- _l

= * * - * *

dp, (flp + pfy + 8,87 phl(olol) hlp)dt 5
(19)

SNy =y Baho dES;

x(0) = E(x:(0)), p (0) = cov(z.(0)) ,
where Xe is the estimate, and p(t) is the error covariance matrix.
This will be considered as the first stage of the filtering algo-
rithm.

Find an appropriate bilinear approximation model for the system in

(18) of the following form:
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dx

[H

fz(x,ut,t)dt + gz(ut,t)dw s

(20)

dys = hz(x,ut,t)dt + czdv2 ,

where
fz(x,ut,t) = I u X, +u = A(ut,t)x + B(ut,t) ;

. n
hZ(XQUt,t) = I u .xj +u = C(ut,t)x + D(Ut,t) 5

gz(ut’t) = ut:(n+3) = go(u »t) . (21)
Here the second equality is used for mathematical convenience. The
controls u = {uj}, j=1,2,...n+3 are measurable with respect to o-
algebra {yfs; s € [0,t]}, and are chosen to minimize the following

global filtering criterion

T -
0Ga) S min E I Gy ]l (22)
u 0

where k denotes any of the functions f2, gy» OT h2, while k denotes

-~ -~

the corresponding approximation f2’ 8y> OT h2 in (21). Using the
property of expectation and Bayes formula, (22) becomes
T

min E( S E(k—k)z/y ;s < t)dt
. 0 fs =

Q(u)

T

min E( S L(yf,u)dt) ) (23)
0
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where L(yf,u) = Et(k-i)z, and arguments (x,y,t), (ut,t) are omitted
for brevity.

The minimization of (23) with respect to u = {uj}, i=1,2,...n+3
can be performed "locally'" since L depends on the d—élgebra (yfs,
s € [0,t]), which is not affected by the uj's.
Assume that the aj‘s which minimize (23) are obtained.

(4) The new equivalent system has the following form:

dxt

(Al(ut,t)xt + Bl(ut’t)dt + Gl(ut,t)dw ,
(24)

dy, = (Cl(ut,t)xt + Dl(ut’t))dt + odv ,

where
Ap(u,t) = [£,(8) + AGu,0)], B (u,,t) = B@,,¢) ,
- h, (e) . 0
C,(u_,t) = x » D.(u ,t) = “ ,
b C(u_,t) e D(u _,t)
t t
. A cl 0
Gl(tht) = (81(t) + go(ut,t)), g =
0 02

Here again the matrices are of compatible orders.

(5) Again, with certain assumptions about (Al, Bl’ Cl’ Dl’ Gl’ g) and
the distribution of the initial state X, given Yo (see [2] and [3]),
the corresponding conditionally Gaussian filter is of the follow-

ing form:
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dxt = (Alxt + Bl)dt + S dv ,
-0.5
= % *
(25)
av = 0o%) %@y - (c.x + D.)d)
t 17t 1 i
= * f - *
drt (Alrt + rtAl + GlGl SS )dt' R

where Al, Bl’ Cl’ Dl are as in (24), and the arguments (ut,t) are
again omitted for brevity. A schematic diagram representation of
the algorithm is given in Figure 3. A second-order example to

demonstrate the algorithm steps follows.

Example 2

A second-order, linear sonar target track is considered here with a non-
linear observation. This could represent active tracking of a multi-mode
range system or passive tracking with multi-receiver-transmitter and corre-
lated time delay.

It is assumed that state vector (range = x;, range rate = x2) evolves

according to the following stochastic differential equations:

dx = Fxdt + det : (26)
dxll [o 1 ] IOTj
where dx = l | , F= ! ’ y G = g i » & = 1/1,
p dx, | 0 -a o
2 | . il 1%

1 . . :
v is a Wiener process, and T is the target maneuver time constant.
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The measurement equations are nonlinear due to target motion during
transmission. Neglecting the nonlinearities in the "velocity observation," it

is assumed that

dy = H(x,0)dt + Rdw’ 27)
T 1
( dyl X7 + mx, X, 9 0 )
where dy = | , H(x,t) = , R = s W, is a

Wiener vector of measurement noises, m = a/c, a is a constant, and ¢ is the

average speed of sound in water. Applying the above algorithm, the two

subsystems are given next.

Subsystem I
Here only the linear, Yy» observation is used. The system and

observation equations are

¢

dxl = x, dt ,

dx, = -ax, + adwt , (28)

2
dy2 = xzdt + czdwt 5

Then using the Kalman-Bucy filter for (28) yields

& A P

= =3
dxlf = xzfdt + 5, dv ,
(29)
~ ~ pz
dx2f = —axzfdt + P dv ,

2
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where X = E(xi/yz), i=1,2, the conditional expectation, dv is the
innovation process, and P,, Py are the standard time-variant solutions

to components of the Riccati equation.

Subsystem II

The best bilinear observation approximation is obtained such that
uj, j = 1,2,3 are measurable with respect to the o-algebra (yzs,
s € [0,t]), and minimize the following global criterion:

T
J@) = min EC S (egx, = Qaxp + ux, + u3)2)dt , (30)

u. 0 11 272
]
which can be written equivalently using the properties of expectation as

T
J(u) = min E( [ L(y,u)dt) , (31)
u 0

2N t P22 B
where L(y,u) = E (XIXZ) - E (Rl) +E@N") ,N= u X, + u, X, + ugs
Rl = 2xlx2N. Et refers to conditional expectation with réspect to

the observation Yt' Thus, performing the minimization with respect

to uj, j =1,2,3, the following are obtained (see [5]):

b
>

2f 2

?
>

u, = Xig o (32)

>
>
>

Uz TP3 T Xie¥or o



Then, the new equivalent system is

dx

Fx dt + G dwi 5

- 2
dy Clx dt + Dl(x)dt + g dwt ,

where - 4 ~
m(l+ul) u2 X mu3
C = s D (X) = s
. 0 1 : 0
“ol 0
g = » F,G are the same as in (26).
1.0 02

Now, assume the following:
(1) if £ denotes any of the functions A, G, Cl’
T
P( /S |f]| dt < =) =1 ;
0
(ii) x

sponding conditionally Gaussian filter is

Dl’ o, then

T
dxl = xzdt + 3 (Fl(l + mul) + mu2F3)dvl + > dv2 .
o o
1 2
dx2 = -axzdt + [—E-(F3(l + mul) + muziz)]dvl + —E-dv
Sl %

where,

-~ A A A

dv., = dyl - (1 + U, mx, + mu, X, + mu3)dt R

A

dv, = dy2 - xzdt 0

2

?

(33)

(34)

20

0 given Yo is conditionally Gaussian. Then, from (6) the corre-
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and m,a are defined as before.

The covariance equations are

1 2 r§ '
dPl = {2P3 - [——-(F (1 + mu ) + F3mu2 + ;EJ} dt ,
l 2
2
2 1 I‘2
sz = {a" - 2a F2 - 55 (P (1 + mu ) + szuz + ;E]} dt ,
l 2
dP3 = {Pz - ar3 - [——'(P (1 + mu ) + T muz)(P (1L + mu )
c
1
+T muz)] 2 (PZFB)}dt . (35)

92
where up, Uy, uy are as in (32).
Notice that in this case (34) and (35) are the same as the filter
equations of the modified-second-order truncated filter defined

by Jazwinski [6] because the nonlinearity is of second order, al-

though the approach is quite different.

Extended Kalman

Filter

The filter

where m,a are

equations are [6]

- 1 ~ ~ 5
xzdt +-—§ [(1 + mxz)pl + p3mx1]dvl + —E-dVZ ,
Ul 0'2
(36)
~ax dt + L [0+ medp, + poms ) ldv. + <2 gu
t 2 Z Rl OSSR T WS
91 9

as defined before, and



dv

dv

(dyl - (1 + mxz)xldt) ,

(dy2 - xzdt)

The covariance equations are

dp

dp2

dp

2
~ ~ p
1 2 _P3
{2p3 02 (@1 + xzm)pl + xlmp3) - 02} ,
1 2
2
2 1 - 3 2 2
{a” - Zap2 - =3 [+ mxz)p3 + mxlpz] - 2} dt ,
% 22

l ~ -~ ~
{pz - ap,y - [02 (a+ mx,)p; + xlmp3)((l + mx,)
1

~ 1
Py ¥ mPyx)) - T7 pypglde .
Y9

(37

22
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IV. SIMULATION RESULTS

" The TNF algorithm and the EKF algorithm for the previous example were

simulated by a digital computer. In the simulation, a fourth-order, Runge-

Kutta integration algorithm was used for all trajectory filters and differ-

ential equations of both the original system and the error-covariance

matrices.

Throughout all the simulation cases, the Wiener processes wt,

which describe the excitation noises, were generated from pseudo-random

Gaussian variables, vi, N(0,1). The latter was generated by standard

(IMSL) library subroutine, and increments of w,_ were approximated by

Aw = YAt Vi where At is the integration step size.

The performance of the two filters are compared on the basis of:

(L

(2)

The "mean-square error" (m.s.e.) of the filter output to x

such that
T . 2
JTNF = E(OI (x(t) - xTNF(t)) dt) ,
(38)
B - 2
o E(OJ' (x(t) = x o(£))7de) ,
and JJ gives the relative (percentage) difference between JTNF’
JEKF such that
J_,=J
33 = —-E-%—F——T—-NE x 100 . (39)
EKF :

Root mean square error
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1) iy 2
N (x77(t) - x> ()
- i k k| k 172, _
Qj(t) = [iil N ] s J = 1,2
, npa (40)
¢9) (1) 2
N (x,77(t,) - x,7(t,))
= :

where Qj’ j = 1,2 are the RMS range (position) errors. VQ., j =
1,2 are the RMS velocity (range rate) errors, and (x§i)(tk), ;gi)(tk))
are the jth components of the true state and its corresponding TINF,
EKF estimates at time tk on the ith simﬁlation run, in a series of
N runs. For completeness, some comments on the filter initializa-
tion seem in order here. Under actual operating conditions it is
extremely difficult, and indeed rare due to one reason or another,
to obtain reliable initial estimates of the state vector and its
associated covariance matrix. Consequently, the following set of
initial conditions are reasonably chosen. Throughout, the initial
range value is 5000 meters, while the initial range rate value is
assumed constant and chosen from the following set (50 m/sec, 500

m/sec, 1000 m/sec). The initial condition of the estimates are

calculated according to the following equation:
x;(0) = x,(0) + vp,(0) ng, 1=1,2 (41)

where ni is a random variable. The initial covariance matrix is

[pl(O) P, (0) F10° 102

P(O) = ; = x ’
2@ p,(0) 10°  10°

where the diagonal elements of p(0) are chosen relatively large



25

so that the filter will "forget'" the initial values as more data
arrived, and to ensure the randomness of the initial estimates.
In all cases, a system noise of 1% variance of thé initial state
values is used, and different levels of measurement noise standard
deviation (from 2-20%) of the initial range, range rate respectively,
are added. For convenience, the time interval T, for each run is
10 seconds, and the number of runs, N, for each simulation test
case is 20. Thus, all results have beén ensemble averaged over
N = 20 runs.

The effect of increasing the nonlinearity, (i.e., ‘increases
in a), of the system on the rms error levels Qj(t), VQj(t), i
1,2, are demonstrated in Figures 4 and 5 as compared to Figures
6 and 7, respectively. Accordingly, -the TNF performance improved
substantially, and the rms-error levels increased considerably
as ccmpared to the rms-error levels of EKF. These comparisons are
summarized by Table 1.

Comparison of Figures 8 and 9 with Figures 6 and 7, respective-
ly, and Table 2 indicates that the EKF gains in accuracy relative
to the TNF as the observations become more noisy (i.e., increases

the range measurement noise standard deviation, o, to 20%). This

1
is due to the fact that the nonlinearity, (here in the range measure-
ment), is masked by the large measurement noise.

From the tables and figures mentioned above, it is seen that
in many cases the INF shows significant improvement in filter

accuracy as compared to the EKF. For certain applications, the

complexity of the proposed algorithm (INF) over the EKF would
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Table 1. Synopsis of the Percentage Accuracy of TNF Over EKF.

a 33,% JIh%
1 10.91 35.57
1.5 32.37 57.14
2 78.60 90.03
3 91.42 98. 85
(o, = 22, o, = 10%, x (0) = Sl0 n x,(0) = 10° m/sec)

Table 2. The Effect of Measurement Errors on the Percentage
Accuracy of the TNF Over the EKF.

a 3 3 3
9 2% 107 20%
o 10% 10% 10z
JJlZ 91.42 11.0 - 7.23
JJZZ 98.03 17.47 -16.13

(x2(0) = 103 m/sec, xl(O) = 5x103m)
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be justified by the significant improvement in the filter accuracy.
That the EKF performs slightly better in the higher observation

noise case is due partly at least to the suboptimal approximation

used.
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V. CONCLUSION

A new global-filtering approximation for a certain class of nonlinear
systems is presented. An important practical feature of the praposed method
is the method's independence of the model smoothness assumption which is
crucial to traditional techniques. Furthermore, a major and equally important
byproduct is the generation of a "close" (in m.s.e.) bilinear model approxi-
mation of the original nonlinear system. The assumption that Xq given Yo is
conditionally Gaussian may be satisfied under somewhat realistic operating
conditions, and, of course, it is more general than the traditional Gaussian
assumption of both X, and Ve

The digital computer simulation demonstrates the substantial filtering
accuracy improvement of the TINF over the popular EKF in most cases.

In terms of computation time the TNF takes roughly 10% longer than the

EKF.
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